If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40g^2-11g=0
a = 40; b = -11; c = 0;
Δ = b2-4ac
Δ = -112-4·40·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-11}{2*40}=\frac{0}{80} =0 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+11}{2*40}=\frac{22}{80} =11/40 $
| 72+4w=12w | | (120-x/100)=100 | | -18.2=-2.6v | | 120-x/100=100 | | 3(2x-4)+10=4x+10 | | 15-w=4w | | 4x/3=87 | | 24+3x=3x+2(7-1) | | 13f^2+30f=0 | | 2x=156=4x+192 | | 219-y=130 | | 40x^2-134x+3.33=0 | | 2x+156=4x=152 | | 143-y=276 | | 13.6=1.7z+51 | | 9x-3=3(3x-2) | | 5.3=-2+x | | 2a²+6a-20=0 | | -38+1.9x=9.5 | | 7(c-13)=-56 | | z/4+4=-68 | | 5x-15=2x+27 | | 18x-420=160 | | x2+-12x+52=0 | | 18x-420=16x | | (2x^2+17x-9)/(2x-1)=0 | | 7d+5=68 | | ƒ(x)=x2+8x+12 | | 23x+12=19x+15 | | 1x+5x=16.24 | | 28+2w=52 | | -5(z-6)=6Z |